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In this paper, particle simulation algorithms with time-varying
weights for the gyrokinetic Vlasov-Poisson system have been
developed. The primary purpose is to use them for the removal of the
selected nonlinearities in the simulation of gradient-driven microtur-
bulence so that the relative importance of the various nonlinear effects
can be assessed. It is hoped that the use of these procedures will result
in a better understanding of the transport mechanisms and scaling in
tokamaks. Another application of these algorithms is for the improve-
ment of the numerical properties of the simuilation plasma. For instance,
implementations of such algorithms (1) enable us to suppress the
intrinsic numerical noise in the simulation, and also {2) make it
possible to regulate the weights of the fast-moving particles and, in
turn, to eliminate the associated high frequency oscillations. Examples
of their application to drift-type instabilities in slab geometry are given.
We note that the work reported here represents the first successful
use of the weighted atgorithms in particle codes for the nonlinear
simulation of plasmas.  © 1993 Academic Press, Inc.

L. INTRODUCTION

In this paper, we develop and apply partially linearized
particle simulation algorithms, in which the particle have
time-varying weights, to the following problems in the
gyrokinetic simulation of plasma microinstabilities:

1. the removal of the selected nonlinearities in the
simulation of drift waves in order to assess the relative
importance of these nonlinearities,

2. the suppression of high frequency oscillations in these
simulations by regulating the weights of the fast-moving
particles so as to improve the numerical properties of the
simulation plasma, and

3. the reduction of intrinsic numerical noise due to the
free-streaming motion of the simulation particles,

For the past two decades, particle simulation has been an
essential tool for the investigation of nonlinear kinetic
phenomena in plasmas in the areas of fusion, space and
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particle-beam physics [1-3]. Standard particle codes use
particles with constant weights to solve the Klimontovich
equation, which is in the continuity form with no sources,
by following the trajectories of the particles under the
influence of the self-consistent fields. There is considerably
less experience with the other possible nonlinear kinetic
simulation approach, namely, the so-called Vlasov code
simulation method [4], in which the Vlasov equation is
solved numerically using the method of characteristics.
Difficuities with this approach associated with need for a
velocity space grid have prevented its wider application.
These difficulties are (1) the greater computational resour-
ces required than for particle simulation, especially for
multi-dimensional simulations, and (2) accuracy problems
associated with phase-space filamentation.

However, Vlasov codes have several distinct advantages
over particle codes. For exampte, one can easily turn on and
off the various nonlinear terms in the governing equation to
assess their relative importance. Furthermore, one can also
assign arbitrarily low levels of the initial perturbations to
give a better assessment of the linear growth or damping
of the waves. (This is especially useful for investigating
marginally stable phenomena for plasmas near equi-
librium.) These special features were indeed used in 2 mode-
coupling Vlasov code to determine the mechanisms for the
saturation and transport for drift instabilities [ 5, 6]. The
code was written after the observation had been made, in
25-dimensional gyrokinetic particle simulations of drift
instabilities, that the resulting fluctuation spectrum was
dominated by only a few unstable modes.

It is not, however, practical to expand this Vlasov code to
include many more unstable modes, nor is it possible to
incorporate these features into the usual particle codes in
which constant-weight particles are used. These difficulties
prompted us to develop algorithms with variable particle
weights for gyrokinetic particle simulation [7]. The time
dependence of the weights is a consequence of the source
terms that appear in the gyrokinetic Vlasov (or Klimon-
tovich) equation when the parallel acceleration and/or the
background inhomogeneity effects (but not the nonlinear
E x B convection ) are linearized. In this paper, we have used
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the partially linearized schemes in 2 3-dimensional simula-
tions to determine whether the nonlinear parallel accelera-
tion plays any role in the observed nonlinear saturation and
particle transport and whether the asymmetry in ExB
trapping observed in simulations that use the “multi-scale
model” is indeed physical [8, 9]. In time, these algorithms
will prove to be useful for microturbulence studies in three
dimensions.

One important application of the present partially
linearized algorithms is to improve the numerical propertics
of the simulation plasma such as time step, grid spacing,
and noise level. For example, by assigning the prescribed
weights of eg(x )/ T, to the fast-moving electrons and thereby
forcing upon them a Boltzmann-like response, we can
eliminate undesirable high frequency oscillations from the
simulation. Ion accoustic waves (and the associated drift-
type waves) then become the only normal modes in the
system, resulting in a considerable improvement in the
numerical properties. There are, however, complications
which we will discuss later. The issue of excessive numerical
noise due to the use of the limited number of particles in the
simulation has been an area of concern in recent years [10].
For exampile, the noise level can sometimes be high enough
that the physical instability of interest is suppressed [10].
This is especially true when the instability is weak. With the
present algorithms, the initial intrinsic noise can often be
totally eliminated by simple zeroing out the contributions
from the zero-order part of the distribution function. This is
a straightforward extension of the noise suppression techni-
ques [11] used in fully lincarized particle simulation
schemes [12]. Recently, noise reduction schemes for fully
nonlinear particle simulations have also been investigated
by Kotschenreuther [ 13 ] and Parker and Lee [14]. We will
remark on this later.

There are two basic particle simulation approaches that
could be used to solve partially linearized systems. In what
we call the standard method, due to Freidberg er af. [12]
(sec also Cohen et al. [15]), the Klimontovich distribution
function is expanded to the first order with respect to the
partially linearized zero-order particle trajectories in the
phase space. The appropriate equations of motion for
the perturbed phase space quantities are then obtained. The
resuiting distribution is an exact solution of the partially
linearized Klimontovich equation. This approach has been
studied in Ref. [8]. Problems associated with seculanties
due to beating between the equilibrium motion and the
source terms were found, even when the secularities repre-
sent small terms. We refer the reader to Ref. [8] and do not
discuss this approach further here. In the second method,
which we develop here, the terms containing the zero-order
gradients of the distribution function in the partially
linearized Klimontovich equation are expressed as sources
that contain only field quantities and analyticaily known
functions (i.e., all derivatives are explicitly evaluated). This

DIMITS AND LEE

results in particle weights which are numerical factors rather
than quantities involving derivatives acting on the &
functions as they are in the standard method. This fact
makes our method more versatile in many applications than
the standard method. :

The organization of the paper is as follows. In Section 2,
the gyrokinetic formalism for the Vlasov-Poisson system
and the gyrokinetic particle simulation techniques for drift
waves are briefly reviewed. The partially lincarized particle
simulation algorithms with time-varying weights are
described in Section 3. The equations for the particular
applications to gyrokinetic simulation are given in
Section 4. A discussion of the phenomena observed in the
original gyrokinetic particle simulation of drift waves and
their comparisoens with the results from the partially
linearized weighted-particle algorithms are presented in
Section 5. In Section 6, noise reduction issues and the
suppression of high frequency oscillations are discussed.
The summary and the concluding remarks are included in
Section 7.

2. GYROKINETIC PARTICLE SIMULATION
AND APPLICATIONS TO DRIFT WAVES

Let us briefly review the gyrokinetic formalism and
technique as applied to drift wave simulations. The
gyrokinetic particle simulation scheme uses standard
particle simulation methods to solve the gyrokinetic systems
of equations which are based on the well-known gyrokinetic
ordering,
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where p,=v,/Q,, Q,=q.8/m.c, v,=/T./m,, 4., m,,
and T, are respectively the charge, mass, and temperature
for species «, ¢ is the speed of light, B is the magnetic field
strength, ¢ is the electrostatic potential, w is the frequency
of the perturbation, L is a characteristic perpendicular
equilibrium scale length of the system, and L, is the
characteristic parallel wavelength of the perturbation. We
will drop the species index « when we are referring to either
species and there is no ambiguity,

The electrostatic gyrokinetic Vlasov equation for a
plasma in a uniform magnetic field is [10, 16, 17]
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x is the particle position, v, is the perpendicular velocity,
#(R) is the gyro-averaged eclectrostatic potential,
F(R, p, v, t)is the full gyro-averaged distribution function,
p=v2/2, and C(F) is the collision operator. The elec-
trostatic potential ¢ is given by the gyrokinetic Poisson
equation which, for a single ion species i, is
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where

d(x) =} ¢(k) I'y(k? p}) exp(ik -x), (1f)
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and where 1=T,/T,, p,=¢,/,, ¢,=./T./m,, k_ is the
perpendicular wave number, Ap=./T,/4nn.e’ is the
electron Debye length, n, is the background ion number
density, n* is the number density of species «, and T'y(b) =
Iy(b)e~*. For ions, C(F)=0. For the electrons, finite
gyroradius effects are negligible so that W=¢=¢=¢.
Pitch-angle scattering is retained for the electrons, via a
Monte-Carlo model for the Lorentz collision operator [67,

o Ve i( é%
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Here v,; is the electron pitch-angle scattering frequency,
which in these studies is taken to be velocity-independent,
and £ is the pitch angle. Since the parallel phase velocity of
the waves is usually smaller than the electron thermal
velocity, the population of runaway electrons should be
negligible. The intrinsic collision time due to the particle dis-
creteness in the simulation is several orders of magnitude
greater than the typical run time [6].

With the gyrokinetic system, there is no longer any need
to follow the details of the gyromotion. The resulting
relaxed time step and grid size requirements [10] make
‘tractable the simulation of low-frequency (@ <Q))

C(F.) (1h)
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microinstabilities well into the nonlinearly saturated regime
[3, 6, 16, 18, 19] and represent an important advance in the
path towards understanding the nonlinear evolution of
these microinstabilities.

To use a periodic geometry to model a driven system
driven by spatial gradients, we use a simple particle con-
serving generalization of the standard source term for the
gradients commenly used in linear theory [20] and non-
linear fluid simulations [21]. The perpendicular configura-
tion-space velocity in Eq. (1a) is modified so that it
becomes [10]

dR ¢ [ 0¥ - .
\’pﬂPEZ=—E[6—R+KW]Xb, (1i)
where k= —VinFy=x% and b=%+0¥. Here, Fy is

the background Maxwellian distribution function with
associated density ny{x) and temperature T,{x). We
can write k as w=rx,[1+n(v]/v],—3)], where n=
(dIn Ty/dIn ny) and x,, represents the density gradient. For
n =0, we have x =«x,,.

This velocity has the important property

V-V = —KX,

where %= —(¢/B)(8¥/dy) is the x component of v,,,,,, and
R = (x, », z). This results in the addition of the term

¢ 0

o [bxk(yF}]

to the left-hand side of Eq. (1a).

3. WEIGHTED PARTICLE METHOD

The general form of the kinetic equation solved by a
standard particle simulation code is that of a continuity
equation for the Klimontovich density /-

af _
5 FavN=0,

(2}
where the repeated indices denote summation over all
phase-space components,

N

f(Xz t)= z 5D(Xfxf(t))9

j=1

j is the particle index, N is the particle number, D is the
dimensionality of the single particle phase space, X is the
phase-space coordinate vector, and V=dX/dt It is then
generally argued that, provided that the initial conditions
are chosen properly and the fields are calculated in such a
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way as to render the simulation collisionless, a single
realization of the solution of Eq. (2) should adequately
represent the solution for the Vlasov equation that is
formally the same as Eq. (2).

To derive our algorithm, the terms in the Viasov equation
to be linearized are first approximated by terms of the form
g(X, ) ™ where g is some function of the phase-space
coordinates and time, and f'% is the zero-order distribution
function, which solves the Vlasov equation in the absence of
the term to be linearized. The justification for the replace-
ment depends on the particular replacement made. For the
removal of the parallel nonlinearity, the replacement
affdv, = —v, f /vl is made in the parallel acceleration
term in the gyrokinetic Viasov equation (1a), so that

=—=FE, —.
g m il el

r

This replacement is justified by noting that it is valid if £«
s 2 Maxwellian and that g f, where df is the departure
between /°' and the initial Maxwellian, is one order smaller
in the gyrokinetic smallness parameter than gf'®). For the
removal of the nonlinear x term, the analogous replacement
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This is again argued to be valid because the differences
between the expressions in Eq. (3) are one order smaller in
the gyrokinetic smallness parameter than the last of the
expressions. The resulting equation can then be written in
the form

df

@V = g(X. S,

with the characteristics given by

E(_

X©s).
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The formal solution is
1% 1= 0%, 0)[ 14 [ ar g0, 1) |

X exp [—J dr 8, vViV(X, t’):|,
0
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where X' = X®(¢') and X, = X'"(0). Using

FOUX, )= f(X,, 0) exp [— [Larapionx, r')}
Q

this can be rewritten as

SX, )= fOUX, 1) [1 + | dr gix, r)].
O
Applying this to particle simulations, we have
fw](xs t) = Z ‘SD(X - XJEOJ):
-
s0 that

f:f<05+fﬂl
= z P(X — X;()J([)] [I + J‘r dr’ g(X}ol(t’), t')]. (4)
i o '

This formula lends itself directly to particle simulation. The
new scheme requires the storage of two additional variables
per particle to account for the first-order velocity perturba-
tions and spatial displacements. For our application, this is
an increase of less than 30 %. The resuiting algorithms that
were implemented will now be summarized.

4, PARTICULAR APPLICATIONS OF THE
WEIGHTED PARTICLE METHOD

4.1. Linearized-E, Algorithm

The gyrokinetic Vlasov equations, partially linearized
with respect to the parallel acceleration term, are

ary v w40, 510 — LU g go
7"" L {[Vexs+ (k¥4 00))81f }—mv, WS

=C(f"), (5a)
f{O)

(5b)

a1 +V,- {["ExB"‘(KlP""GW}Y]f(O)} C(f ),

where vy, z=(g/m2)bxV, ¥ and E =
Eq. (4), these have the solution of

(0/6z)¥. From

(0) (1) M
reree =g (14 )
x3(R, —RP) 8w, —ol)),  (5¢)
where
u<1r=_f dr' E (RO, 1), (5d)
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R, =(x, y), and R{”(r) and vfP)(¢} are the trajectories
obeying the initial conditions evolving with zero parallel

acceleration.

4.2. Linearized-E| & x Algorithm

The removal of the multiple-scale model nonlinearity is of
interest to determine its effect. Motivated by the agreement,
which will be described later, between the results from the
linearized-E|, code of the previous subsection and the full
gyrokinetic code, we remove both the parallel and multiple-
scale nonlinearities. The linearization is then rigorous in the
sense that a Maxwellian is a solution of the zero-order
Vlasov equation. The resulting equations are

ot X ow v
o Ve [+ 00 ) T Py — LBy L
= (M), (6a)
5f(0)

a1 + V- {[¥eea+ 00, §1 /O =C(f®). (6b)

A spatially uniform Maxwellian has been assumed for the
initial Vlasov distribution function and it remains one for

all time. The corresponding Klimontovich distribution
function is

(0}, (1)

— £00) 4 ) o, Vs
=9+ _Z(1+xij’+—‘v%‘i)
J !

x 3R, —RP)) d(oy —v{)), (N
where the zero-order trajectories have neither the parallel
acceleration nor the x term. This algorithm is particle
conserving as can be established most easily by noting that
the integral of the first-order Vlasov equation over position
and parallel velocity gives (d/dt) N'"(r) =0, where N V(1)
is the first-order contribution to the particle density.

Note that 4x{® should be taken to be continuous in time
in Eq. (7) rather than periodic in space since this avoids
the formation of a discontinuity of the density at the
x boundaries of the simulation box. For simplicity, the
equations in this section are written in (x, y, z, v, ). They can
be easily generalized to (x, y, z, i, v))).

Equation (6a) can be identified as being equivalent to the
electrostatic, slab-magnetic-field limit of the equations of
Frieman and Chen [22] by writing f'"'= ¥F, + h. The
present method, however retains the favorable stability
properties of the gyrokinetic particie simulation formula-
tion {10] by solving Eq. (1e) for the effect of the polariza-
tion drift. This makes the method more implicit than a
direct explicit solution of the Frieman—Chen equations.
We note that the partially linearized method is easily
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generalized to handle the additional complications of
magnetic field geometry and electromagnetic effects.

The random velocity ¢V, that models collisions, if any,
is most conveniently retained as a part of V®. It is
straightforward to show that the collisions are correctly
treated in this way. Collision models such as those of
Shanny, Dawson, and Greene [23], and of Boozer and
Kuo-Petravic [24] consist of adding a random paraliel
velocity, constructed to have the same statistical properties
as ), in real pitch-angle scattering. In any set of variables,
the pitch-angie collision operator consists of a generalized
diffusion term and a (possibly zero) drag term. As long as
the collisionless characteristics remain smooth, when
discretized after linearization, the linearization does not
change the diffusion term. The drag term is even more
robust under linearization.

4.3. Conservation Laws

The conservation laws obeyed by the above algorithms
are both intrinsically interesting and useful as diagnostic
checks of the correctness of implementation and numerical
errors. The conservation laws for the system given by
Eqgs. (1) have been discussed elsewhere [ 10, &, 18], and are
briefly summarized here. In the absence of the gradient
driving term and collisions, there is a conserved particle
number, parallel momentum, energy, and an infinite
number of conserved entropy-like quantities of form
analogous to those discussed by Krall and Trivelpiece [25].
With the gradient driving term of Eq. (1i), the same conser-
vation laws hold provided that the replacements f— f=
exp(—xx}f and de dv| du — I dR dv du exp(xx) are
made. The collision term of Eq. (1i) breaks the conservation
of momentum and entropy. In the standard gyrokinetic
codes of Ref. [10], the total momentum and energy con-
straints are useflul diagnostics, while number conservation is
trivially satisfied. The conserved entropies are generally not
calculated because this requires the discretized velocity
space, which is a structure that particle codes are designed
to avoid. Energy conservation has been used extensively as
a diagnostic in debugging the codes used in Refs. [ 16, 3, 6,
187]. For the linearized-E, system with the nonlinear
gradient model term, the quantities that were conserved by
Egs. (1) are no longer exactly conserved, although the error
terms are one order higher in the gyrokinetic smallness
parameter than the quantitics themselves, Thus, their
conservation becomes exact in the weak-gradient limit.

Since the linearized-£|; & k model is derivable by a
systematic multiple-scale expansion from a system that con-
serves particle number, momentum, energy, and generalized
entropies, it has conservation laws for perturbations of these
quantities. One such quantity, the quadratic piece of the
Gibbs free energy, has been proposed as a diagnostic by
Kotschenreuther [13] (although the argument given there
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that the source term of Eq. (12) of that work vanishes in the
infinite-particle-number limit appears to be incorrect). We
have also impiemented a diagnostic, based on this quantity
and used it, primarily for debugging purposes. The source
terms that represent the nonconservation of this quantity
measure the error in the sampling of the potential by the
sirnulation particles as well as the grid resolution. Since this
is not a direct measure of the ratio of the physical fluctua-
tions to those induced by noise, direct checks using runs
with different numbers of particles are used to establish con-
vergence with respect to particle number. The construction
of quantity whose accuracy of conservation measures
the convergence with respect to particle number is an
interesting topic for future investigations.

5. DRIFT WAVE SIMULATION WITH PARTIALLY
LINEARIZED ALGORITHMS

The geometry used in the gyrokinetic drift wave simuia-
tions is a slab with one ignorable position coordinate, z. The
magnetic field is uniform and inclined to the z axis, B=
B(Z+ 0y¥), where Z and § are the unit vectors in the z and y
directions. The parallel wavenumber is then k= 6k,. The
inclination angle 6( < 1) is a constant in the shear-free slab
models. As defined above, the background gradient (for our
multi-scale model) is in the x direction. Since the shear-free
system is translationally invariant, we can assume that both
the particles and waves are periodic in both x and y. The
simulation parameters are: L, x L, =324 x 324, where 4 is
the grid size, N (the number of simulation particles per
species) = 128 x 128, m;/m_ = 1837, 1=T./T,=4 or 100,
particle size =24, §=0.002 or 0.01, p,=4.2864, kp, =
0.214, (k.p., yp )= {(0.842m, 0.842n), w,/2;=0.18n,
where (m, n)=0, +1, +2 ..v,/2;=0 or 0001,
£2; At =109, 2.18, or 5.45, and A1 is the time step used in the
code. The k&, =0 electrostatic potentials are zeroed out in
the code, ie., ¢(m =10, n#0)=0, to satisfy the requirement
of |k, | » |x| for the multi-scale model [ 10]. For simplicity,
we have also set g{m #0, n=0)=0 [5, 6].

Following the convention used in the papers of Lee and
coworkers, in most of what follows, the system of units used
has lengths scaled to p,, times scaled to ', densities
scaled to the mean density n,, and electrostatic potentials
scaled to T,/e, where e is the unsigned charge of the
electrons.

Figure 1 shows the time histories of the amplitudes of the
(m=1, n=+1}) modes of the electrostatic potential,
denoted by ¢, . for a typical semi-coherent gyrokinetic drift
wave run with #=0.002, t =100, v, = 0.001, and 4r=1.09.
They are the dominant fluctuations in the simulation, and
the linear theory indicates that they also correspond to the
most unstable modes in the system, with w= +£0.034 +
0.027i [ 5, 6]. The semi-coherent spatial patterns of the elec-
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FIG. 1. Time Evolution of ¢(1, 1} and ¢(1, —1), deno‘ted by ¢, for

the drift instability using the nonlinear gyrokinetic code with # =0.002,
=100, v, =0.001, 4t = 1.09, and (k,, k,) = 0.842(m, n).

xsy

trostatic potential for this run are similar to those shown in
Refs. [5, 6], as they are in all of the runs discussed in detail
in this paper. The measured values in the linear stage of the
development are in good agreement with the theory and the
other phenomena observed can be summarized as follows
(5,6, 8]:

1. The time evolution of the instability can be divided
into pre-normal-mode, linear, saturation, and steady-state
phases.

2. In addition to ¢, »°, and A' associated with the
(1, £1) modes, nonlinearly generated (2,0) and (0, 2)
mode fluctuations in the density have also been observed.

3. The + and — modes oscillate with the nonlinearly
modified real frequencies in the post-linear phases. The
nonlinear modifications include;

« a upward frequency shift to w, ~ +0.055,

« a frequency broadening,

« a frequency difference between + and — modes
implying a net x compenent of the phase velocity, w/k ., and

« amplitude fluctuations (around a mean value of
7%) due to an energy exchange between the + and —
modes.

4. A steady-state particle flux, due almost entirely to the
+ and — modes, has a value much less than that from the
quasilinear theory. It increases with v,; and decreases with 8.
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FIG. 2. Time evolution of ¢, using the linearized-£, algorithm of
Section 4.1 for & =0.002, t=100, v, =0.001, and 4= 1.09.

We have carried out the drift wave simulation based on
the linearized-E|| algorithm. (In the actual coding, both the
ion and electron parallel nonlinearities were removed,
although its effect on the ion motion is insignificant in this
case.) Figures 2 and 3 show the time histories for the
electrostatic potentials and the resulting electron particle
flux, respectively, where the latter is calculated using [10]

1 X .
<rex>=ﬁ Z (1+Wj)VExB'x!

i=

where

I

0010} j
1‘0.005- i 1
v LY |
v I il
" il |
i

O~ 500 1000 1500 2000

2,1

FIG. 3. Time history for the electron particle flux induced by the

instability shown in Fig, 2.
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and w; is the contribution from the linearization. Since the
parameters used are identical to those of Fig. 1, there is
evidently a satisfactory qualitative (although not quan-
titative) agreement between the two runs. For instance, the
linearized-E | run saturates at a slightly higher level of 9%
and also oscillates at somewhat higher frequencies of
w, >~ +0.067. In the “steady-state” phase of the evolution,
the two runs have similar values of the particle flux as weill
as for the frequency difference (x phase velocity) (Figure 3
shouid be compared with Fig. 4 of Ref. [9]). However, the
level of the energy exchange between the + and — modes
i reduced in the linearized- £, run.

Thus, although there are quantitative differences between
the results from the partially linearized code and the
original code, they indicate that the same saturation
mechanisms are operative. This is consistent with the pic-
ture of the saturation mechanism portrayed in our previous
work [8, 9], namely, the increased real frequencies in the
nonlinear stage necessitate higher saturation levels so that
the ion nonlinearity can come into play to maintain the
ambipolarity of the particle diffusion.

To demonstrate the physical mechanism for the reduction
of the electron flux by the parallel acceleration in the non-
linear stage of the simulation shown in Fig. 3, we have used
a non-self-consistent implementation of Egs. (5a)-(5d). The
code follows the motion of gyrocenters and uses the electro-
static potentials ¢ . with similar time evolution and spatial
structure as those shown in Fig. 1. (Thus, the code is the
same as the linearized-E; code except that the calculation of
the sell-consistent potentials from the gyrokinetic Poisson
equation is omitted.} As seen from Fig. 4, this non-self-
consistent code successfully models the flux reduction. The
underlying mechanism is the depopulation of the parallel
resonance, represented by a decrease in the weights of the
particles as they diffuse radially. This decrease in the weights
of the diffusing electron gyrocenters causes a decrease in the
weighted flux as well as in the total (weighted) number of
the electrons at the resonance, as shown in Fig. 5.
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FIG. 4. Electron particle flux calculated from a linearized-E|| code
with non-self-consistent electric potentials similar to those of Fig. 1.
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FIG. 5. Diagram showing the decrease of the total (weighted ) number
of the electrons in the resonance region.

We now discuss the effect of the nonlinear parallel
acceleration term for the various simulation parameters.
For v, =0, 1=100, #=0.002, the agreement between the
linearized-E\, run and the fully nonlinear run is even closer
than for v, =0.001, both quantitatively and qualitatively.
However, for =4, v, = 0.001, and 0.002, the increase in the
saturation levels and the upward frequency shifts in the
linearized-E|| code are somewhat greater than for r=100.
For larger 8, we expect the differences between the full code
and the linearized-E|| code to be more substantial, and this
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FIG. 6. Time evolution of ¢, using the fully nonlinear gyrokinetic
code with =001, =4, v, =0, and At =218,
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is borne out by the simulation results. The results are shown
for a fully nonlinear run in Fig. 6, and a linearized-E, run in
Fig. 7, respectively, fort=4, v, =0, 8 =001, and 41 =2.18.
The linear theory predicts w= +0.064+0.011/, As we can
see, the linear growth is obscured by the noise (although it
can be clearly seen when the signal is filtered ), especially for
the fully nonlinear run. The saturation level of the potential
in Fig. 6 is on the average less than 1% with o, = +0.045,
while in Fig. 7 we have e¢/T,. = 5% and w, = +0.04. Thus,
we indeed see that parallel acceleration nonlinearity, i.c., the
nonlinear-E,| term, becomes important when k| is large, in
agreement with the usual understanding. These results serve
as an example the usefulness of the linearized-E,| algorithm
for understanding the nature of microturbulence. One
important aspect of Fig. 6 is that the steady state fluctuation
level of the instability is nearly the same as the intrinsic
numerical noise as given by |eg/T.| ~ 1/(k p, \/R’ )=
0.66 %, where N is the total number of simulation particles
[10]. The question of whether the noise interferes with the
instability will be discussed in the next section, along with
schemes to reduce the noise.

Simulation runs using the linearized-E,| & x codc have
also been carried out. For such a code, the only nonlinearity
comes from the E x B advection and, as such, it is the same
model as the one on which most of the current under-
standing has been based. For the same parameters as those
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FIG. 7. Time evolution of ¢, using the linearized-E, algorithm of
Section 4.1 with §=001, 1=4, v;=0, and 41 =2.18.
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of Figs. 6 and 7, the results indicate that after the lincar
growth ceases, there is a continued secular growth for at least
one of the modes (either + or —) with an amplitude going
beyond eg/T, =~ 10%. The same behavior is also observed
for 8 =0.002. The reason for this secular growth can also be
understood from the picture given in our previous work
{8, 9]. In the algorithm specified by Eq. (7), the weight of a
particle can increase or decrease linearly without bound as
it moves in the x direction. Thus in the semi-coherent
saturated states in which the waves have a nonlinear radial
propagation, the dominant modes of the density can grow
without bound as the E x B-trapped groups of particles are
advected. Physically, this growth represents the arrival of
E x B-trapped groups of particles which originated in
regions of ever higher and higher density. Such a system
represents a density profile in which the density runs ail the
way from —oo to +co. The nonlinear driving term in the
multi-scale model limits the secular growth of the dominant
modes of the density and potentials due to coherent radial
advection, effectively mimicking upper and lower bounds
on the densities contained in the equilibrium density profile.
Another observation is that energy exchange between the
two unstable modes is reduced indicating that the nonlinear
E| and x effects, along with the ion E x B nonlinearity are
responsible for the exchange. The zero-order particle flux
should remain zero in these runs, because the initial dis-
tribution of the simulation plasma is a spatially uniform
Maxwellian and ¢(k =0)=0. Any deviation from zero is a
measure of either numerical or statistical error in the code.

Preliminary investigations involving more turbulent
simulations (the detailed results of which will be presented
in a future publication), in which there are many unstable
modes, indicate that the removal of the nonlinear « term has
little effect in turbulent situations. In fact, the saturation
level of the modes and of the resuiting flux are essentially the
same as those of the corresponding run using the fully non-
linear code. Thus, we may conclude that the nonlinear part
of the driving term of the multiple-scale model has little
effect if the saturated states are turbulent (spatiaily
incoherent) with characteristic radial scales shorter than the
mean gradient scale lengths. Comparisons between the
simulations based on the nonlinear- and linear-x terms will
be discussed further in the next section.

6. LONG TIME STEP AND NOISE SUPPRESSION
USING TIME-VARYING WEIGHTS

This section describes a detailed study on the use of the
time-varying weights in the partially linearized algorithms
for the purpose of increasing the time step and grid spacing,
and decreasing the noise level in the simulation. Let us first
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start with the equation for the weights due to the lineariza-
tion of the parallel electric field. From Section 4.1, we have

dw

(0)
N N eh
@) B

(8)

where w,=vl/7v{)) /o] and dfdr=3d/0t +v,d/0x. For the
fast moving particles in response to the slow waves,
we have §/0r<vd/dx, e, w<k,v,. Here, we also
assume |V, -V | <€|v0/0x,| for these particles. Since
E, = —8¥/éx, and v? = T/m, we obtain for the jth electron,

w;=eP(x\VY)T,. (%
While the zero-order trajectories for the slow particles are
still governed by

ax;” ) & 4 (O
i =Veup; +KPE) ¥ +oi)/b, (10a)
and
do®
%L:O’ (10b)

the equations of motion for the fast particles are now given
by

dx® _
7 (0)
d[ ”VExB,j+U||jbs

(11)
and Eq. (10b) instead. This is because the adiabatic particles
should no longer be under the influence of the external
drive. (In Eq. {11), the E x B term is much smaller than the
parallel drift for the fast particles.) The corresponding
distribution function for this system of slow and fast
particles remains as

N

f= @y = Z (1+ Wj) 5{?(_";(‘0)) 5(')“ - Ufloj))’

i=1

(12)

where w/s are given by ecither Egs. (8) or (9). For the
linearized-E,, & x case, Eqgs. (8), (9), (10b), and (11) are still
valid, and Eq. (12) changes to

F=fFOy - i (14w, + K Ax®)
j=1
x 3(x —x ) d(o) — v, (13)
where 4x[*" is given by
(1'.41')(‘.0’= _iﬁ’{’(x‘.o’) (14)
dt me Gy



318
for the slow particles and

(0)
dAx _ (15)
dt
for the fast particles. Again, Eq.(15) indicates that
inhomogeneity has no effect on the adiabatic particles.

In fusion and space physics, we are often faced with the
situation in which the relevant frequencies satisfy the condi-
tion |w/k, v,.| €1, where v, is the thermal velocity of the
electrons. Thus, since most of the electrons travel much
faster than the phase velocity w, /k;, of such low-frequence
waves, we can assume that their response is nearly
Boltzmann-like, i.e., adiabatic as given by Eq. (9). The per-
turbed density from Eq. (12) then takes on the well-known
form

on = [ £ doy = 5 [eP(xP)T.] 6(x —x*)
j=1

= (e¥/T) no, (16)
where rg(x) is the zero-order number density and rg(x) = n,
for the muiti-scale model. This is a very useful approxima-
tion when the resonant electron effects are not important.
For example, in the simulation of ion temperature gradient
drift instabilities [187, such an electron density response
has been used in the gyrokinetic Poisson equation, and as a
result, there is no need to actually push the electrons in the
simulation.

Equation (16), however, totally ignores the nonadiabatic
effects of the resonant particles with », ~ w/k ., which,
through inverse Landau damping, can give rise to a variety
of low frequency microinstabilities. The scheme we are
about to describe provides a way to recover this important
wave-particle interaction. For example we can use Eq. (9)
for the adiabatic electrons with v” } | w/k, and apply
Eq. (8) for the rest of the electron population to capture the
nonadiabatic response. The resulting w;’s for the electrons
are then inserted into Eqs. (12) or (13). In the linearized-E,
algorithm in the absence of collisions, the v{])s are never
updated and there is no need to re-tag the particles. (In the
presence of collisions and/or of nonlinear E,, however, o[’
(or v;) will change in time and re-tagging the particles
become necessary. This aspect of the scheme is currently
under investigation [26, 27]).

The obvious numerical advantage of using Eq. {9) is the
elimination of the high frequency oscillations, such as the
electrostatic shear-Alfven waves, wy = (k/k)/m;/m. 2,
[10], from the simulation plasma. With the cold
hydrodynamic electron response removed (w. /k) » v,.),
these normal modes simply cease to exist. Thus, the time
step restriction in the simulation is no longer imposed by the
high frequency waves (wy; 41 <1). Instead, it is replaced by
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the Courant condition kv, 4¢ 51 [10]. Although these
two conditions are the same for modes with k£ p, >~ 1, the
numerical implication is totally different. In the absence of
the w,; modes, we have a unique situation in which fast par-
ticles co-exist with slow waves, because w <k v,. One
could then use the orbit averapging scheme to effectively
increase the time step to w A7 <1 [10, 28]. In the present
paper, a simpler alternative will be used. With the w,; modes
removed, the restriction on grid spacing is also relaxed
[10], which makes it possible to simulate a large system
with 4x » p,.

Another conseguence of the elimination of high frequency
oscillations is the reduction of the numerical noise (for
k, p,<1), because the only normal modes left in the
simulation are those associated with the ion acoustic waves
[107. The noise reduction, however, is dependent upon the
damping rates of the normal modes, which are usually very
small. Thus in many cases, one should not expect to actually
realize the reduction that results from the elimination of
these oscillations, unless artificial damping is introduced.
However, when Egs. (10b) and (11} are used, the resulting
particle motion is incompressible in configuration space and
the noise can be reduced, as will be discussed.

To serve as an example for the use of time-varying
weights to increase the time step and to reduce the noise, let
us re-visit the simulation runs shown in Figs. 6 and 7, but
under somewhat different circumstances. To highlight the
similarities between the fully nonlinear simulation and the
partially linearized algorithms, we set ¢(m, n) = ¢*(m, —n)
in the code. This constraint, which, to a certain degree,
mimics a sheared system, has been studied in detaii earlier
[5 6, 8, 9, 187. In_ doing so, we eliminate the energy
exchange between the + and — modes, which is believed to
be mostly caused by the nonlinear velocity space and non-
linear x effects. Consequently, the three-wave coupling pro-
cess, in which the nonlinear E x B coupling of the + and —
density modes gives rise to the (2, 0)-mode density pertur-
bation of the electrons (and ions), becomes the dominant
nonlinear process in the simulation. The resuits are given in
Fig. 8. Here, the theoretically predicted linear frequency and
growth rate remain the same as before.and the nonlinear
saturation level is given by [29]

eb| _role, o) ~0.72%
772 &y g, T

while a simplified quasilinear theory gives |eg/T,.|=
Im(w/Q,)/ (k. p,Y*=0.78% [5], where w, is the real fre-
quency. While the measured real frequency (w, = 0.06) and
the saturation amplitude (|ed/T.| = 0.6% ) agree well with
the theoretical predictions, the linear growth is again totally
obscured by the noise. This is because the saturation
amplitude is nearly the same as the intrinsic noise level of
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FIG. 8. Time history of ¢ _ using the nonlinear gyrokinetic code with
¢, =¢*.0=001,1=4v;=0and 4r=218.

0.66% as discussed earlier. The phase velocity of the wave
is v, = w,/k; = 0.17v,,. Since w, € kv, the scheme using
weights based on the adiabatic electron response can be
utilized to improve the numerical properties of the simulation
plasma, i.¢, to increase the time step and to reduce the
noise.

6.1. Linearized-E| Model

One simple way to achieve these goals for the linearized-
E,; model is to utilize the common approximation that the
fast electrons, while responding adiabatically to the waves
in a perturbative manner, maintain their zero-order dis-
tribution, i.e., /' for these particles is unchanged in time.
{Thus, for the homogeneous loading, the distribution of the
fast particles remains spatially homogeneous.) We can then
assume that the trajectories for the particles with (o)) | » v,
(=w/k;;) obey Eq. (10b) and

dx®
—4=0 17
"o, (17)

where v, represents the highest “relevant” phase velocity of
interest. In other words, we do not have to push the fast
electrons at all, although their adiabatic response is still
accounted for. By removing the zero-order free streaming,
we get rid of not only the restriction imposed by the wy,
modes but also the usual Courant condition k) v, 41 <1
when v, <v,.. Most importantly, the dominant source of
intrinsic numerical noise, i.e., that associated with the unity
term in Eq. (12} for the fast clectrons, is now totally
suppressed.
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Simulation runs using Eqgs. (8) and (10) for the ions as
well as for the slow electrons with |v{{}(| < 0.3v,., and using
Egs. (9), (17), and (10b) for the fast electrons with
o’} >0.30,,, where the distribution is given by Eq. (12)
and £ Ar=545 show a distinct linear growth but
somewhat lower steady-state fluctuation levels than those
of Fig. 8. This is because the background zero-order dis-
tribution of the adiabatic particles cannot be accurately
represented by the limited number of particles used in the
simulation. In this scheme, the contribution to the density
from the unity term for the fast particles is nonvanishing but
constant in time.

A better way to handle this collisionless case is to use
Eqs. (12) and {16) to account for the fast particles and to
substitute the result,

(ne)fast=erfc(u||cut)(1 +e¥(T,} ng, (18)
directly into the gyrokinetic Poisson equation, where erfc is
the complimented error function and v, =0.3v,. is the
cutoff velocity. We, therefore, need only to populate the
phase space with the slow electrons and the ions and to push
only these particles in the code. A substantial savings in the
computer resources can then be realized. The time history
for such a case is given in Fig. 9. Obviously, the noise level
is drastically reduced in comparison with the fully nonlinear
resuits in Fig. 8, but the overall behavior is very similar.
The initial noise in this case mainly comes from the free
streaming motion of the electrons below v, and the ion
contribution is small. The linear stage is clearly visible over
two orders of magnitude in the growth of the instability.
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FIG. 9. Time history of ¢, using the low-noise/long-time-step
linearized-£,, algorithm with the same parameters as those used in Fig. 8
except for 41 =5.45.
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The saturation amplitude at 0.8 % is also very close to the
theoretical value. The frequency and the growth rate are
measured as o, + iy =0.04 + 0.008;, which are somewhat
below the lingar predictions. The differences are possibly
due to the discrepancy between the normal mode approach
and the initial value problem solved by the simulation, as
well as nonlinear effects just prior to saturation. One more
interesting aspect of the simulation in Fig. 9 is the time step.
At Ar=75.45, it satisfies the conditions of w At(=0.22)< 1
and kv, A1(=0.59) <1, and it is much larger than 4¢
used in simulation runs reported so far. The results here
serve as an exampie that the numerical properties of the
simulation plasma can indeed be improved with this scheme
without sacrificing the physics.

Let us now compare the scheme with the one which keeps
track of the fast particles at every time step. (This becomes
necessary, for example, when collisions and/or the
nonlinear parallel acceleration are important and we have
to re-tag the particles.) Here, the ions and slow electrons are
still treated the same way as before with Egs. (8), (10a)
and (10b), but the fast electrons are instead pushed using
Eqs. {10b} and (11} and their adiabatic weights are given by
Eq. (9). Since this is the linearized-E;; scheme, Eq. (12) is
used for the distribution. As stated earlier, the intrinsic
numerical noise originates from the unity term in Eq. (12) as
the result of the free-streaming motion of dx{*/dr = u{f}ﬁ.
Instead of using Eq. (17) for the fast electrons so that their
contribution to the unity term in Eq. (12) becomes time
independent, we can actually keep the motion intact and
remove their contribution to the unity term. The reason is
that the zero-order trajectories for the homogencously
loaded fast particles have the time-invariant property

Of o) > v )0 =0, (19)

ie., the background distribution for the fast particles
remains homogeneous and incompressible in the configura-
tion space. In practice, we can either keep the time inde-
pendent contribution of £ for the fast particles or neglect
it totally when calculating the self-consistent fields in the
simulation. Although the time step has to be reduced in this
scheme, the noise level still remains low. For # =001, t =4,
v =0, and 4r = 2.18, the time history for ¢ , based on this
scheme of fast moving adiabatic electrons is shown in
Fig. 10, where the real frequency is w,=0.045 and the
saturation amplitude is |e§/T,] =~ 0.7%. Except that the
noise interference in the linear stage is slightly more
pronounced, these results are very similar to those in Fig. 9,
where Eq. (18) is used to account for the adiabatic electron
response.

6.2, Linegrized-E, & x Model

Because the zero-order trajectories for ail the particles
(ions, and slow and fast electrons) are given by Egs. (10b)
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FIG. 10. Time history of ¢, using the low-noise linearized-E
algorithm including the adiabatic approximation for the fast electrons with
the same parameters as those used in Fig. 8.

and (11) for the linearized-E| & x algorithm, the time
invariant property extends to all the particles and now
becomes

gy
ot

=0, (20)

and the unity term in Eq. {(13) can then be neglected (or
made constant) for all the particles, When that happens, the
intrinsic numerical noise is totally eliminated from the
simulation. In practice, we replace the one in the unity term
by a very small constant in order to provide a low level
of artificial noise to seed the growth of the physical
instabilitics, We have carried out a simulation using Eqgs. (8)
and (14) for the perturbed quantities for all the particles, ie.,
without the adiabatic approximation, with the symmetry
condition imposed on ¢, for the parameter values 8=0.01,
t=4, v,=0, and A= 2.18. To provide the initial noise for
the simulation, we have kept the time variation of the /9
contribution due to the ions. The results are shown in
Fig. 11. As expected, the initial noise level is lower than
those of Figs. 9 and 10, because the electron free-streaming
motion is completely eliminated. (For ¢ven lower initial
noise, one can introduced an artificial perturbation instead
of using the ion streaming noise.) The growth of the
instability now spans nearly three decades, where
w=0.0454 0.008{ and |e¢/T, |,,, >~ 0.6 %. The linear growth
is nearly perfect. (Most remarkably, the linear as well as the
nonlinear behavior of the instability are almost identical to
those in Fig. 4 of Ref. [5], obtained from a Vlasov mode-
coupling code, which solves for the distribution function fin
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FIG. 11. Time history of ¢, using the low-noise linearized-E| & x
algorithm with the same parameters as those used in Fig. &

the (k. g) space, i.c., the Fourier transformed (x, v,) space.)
Because of the presence of wyy oscillations, it may not be
possible to increase the time step with the present scheme
[10]. However, we can always use the algorithm prescribed
by Egs. (%), (10b}, {11), and (15) for the fast electrons to
climinate the high frequency oscillations. We have carried
out such a run with At=2.18 and the results are almost
identical to the ones shown in Fig. 11, except for the non-
linear oscillation of |¢, |, which has a slightly higher fre-
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FIG, 12, Time history of ¢, using the low-noise/long-time-step
linearized-E, & x algorithm with the same parameters as those used in
Fig. 8 except for At =545,
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quency. To increase A1, we again use Eq. (18) for the fast
electrons, and use Eq. {13) only for the ions and the slow
electrons. With the same parameters as those of Fig. 11
except for A1 =5.45, we again reproduce a nearly identical
time history for ¢ , as shown in Fig. 12, From the results in
Figs. 9-12, we can also conclude that the slight deviations
from the linear predictions of the measured frequencies and
growth rates in the simulation are caused by the use of the
normal mode approach to calcuiate the frequencies and
growth rates, whereas the simulation solves an initial value
problem.

6.3. Comparison and Discussion

Let us now use the same scheme of direct substitution of
the fast electron response, Eq. (18), into the gyrokinetic
equation for the case in which the symmetry condition for ¢
is removed, i.e., ¢{m, n} # ¢*(m, —n). Figure 13 gives the
time evolution of ¢, for the linearized — £, run with 1 =4,
=001, v, =0, A1 =218, and v, = 0.3¢,., where respon-
ses of the ions and slow electrons are calculated using
Eqs. (8), (10a}, {10b), and (12). The evolution is similar to
that shown in Fig. 7, but with much reduced noise. It also
confirms that the velocity space nonlinearity is indeed
important for the saturation of the instability when k, is
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FIG. 13. Time history of ¢, using the low-noise/long-time-step
linearized-E| algorithm with the same parameters as those used in Fig. 7.

The smaller time step used here is necessary due to the large saturation
amplitude,
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large. (When we used Ar= 545 for the same simulation, a
numerical instability was observed. The probable cause is
k, Vg, gdr>1for some of the modes because of the large
saturation amplitude.) The corresponding low noise/long-
time-step linearized-£,, & x run again fails to saturate at the
proper level with one mode dominating over the other. This
type of behavior may be related to the streamers observed
in fluid stimulations [307].

While the above scheme, involving the direct substitution
of the fast electron response into the gyrokinetic Poisson
equation works well for increasing Ar for collisionless
plasmas, the possibility of using the orbit averaging scheme
[28] should be explored for the cases in which we are com-
pelled 1o follow the fast particles. Besides collisions and
parallel acceleration, the presence of magnetic shear and
three-dimensional geometries, which allow regions in which
k=0, may also make it necessary. This ts because, when k|,
approaches zero, we may not be able to use v, for the fast
particles. However, wy,; modes cease to exist in a sheared
system [10] and the orbit averaging scheme is still
applicable.

The various models described in this section require
varying degrees of empirical validation. The linearized-E|,
and x model, when used for all of the particles can be con-
sidered a rigorous model in the regime where the fluctuation
scales are much shorter than the equilibrium radial scales,
which is an ingredient in the gyrokinetic ordering. This
model is therefore valid if the gyrokinetic equations are
themselves valid. The various split-velocity-space schemes,
on the other hand, will require empirical tests to ensure that
no important interactions are lost because they occur in a
region of velocity space in which the model used does not
describe them. Such spiit schemes can be expected to work
well in many cases. For ion-temperature-gradient-driven
turbulence, for example, the phase velocities of the unstable
waves are of order the ion thermal velocity v,;. Therefore in
order to model the interaction of the electrons with the
unstable waves and with beats of pairs of them, full (e.g.,
partially linearized drift-kinetic) electron dynamics is
needed only in a velocity interval whose width is a few times
vy. This interval includes only a small fraction of the
electrons and the Courant condition for electrons at its
boundaries is much easier to satisfy than that for the fuil
electron population.

7. SUMMARY AND CONCLUDING REMARKS

In this paper, partially linearized particle simulation
algorithms, in which the particles have time-varying weights
were developed. These algorithms were applied to remove
selected nonlinearities in the gyrokinetic simulation of drift
waves in order to assess the importance of these non-
linearities as well as to suppress the intrinsic numerical noise
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and to increase the time step A in the simulation. (The issue
of large grid spacing will be discussed elsewhere. )

As we first reported in 1987 [7] and as indicated by
Figs. 1 and 2, the removal of the parallel acceleration non-
linearity was found not to have a significant qualitative
effect on the gyrokinetic simulation results for drift waves
[6] in the small & {=k /k, <1) cases. This can be under-
stood on the basis of the arguments made in our previous
work [8, 9. Briefly, the saturation takes place when the
fluctuation level reaches a point such that the particle flux
of the (linearly) nonresonant ions balances the resonant
electron particle fiux. Comparisons between Fig. 8 and
Figs. 9-12 show that the low-noise/long-time-step partially
linearized algorithms are also adequaie for capturing the
essential physics of the drift instability for larger 8, in the
case where the symmetry condition on ¢ is satisfied.
Moreover, the agreement between the results of the particle
code and the Vlasov mode-coupling code enables us to
ascertain that the three-wave coupling due to the ExB
advection is again the major reason for the nonlinear
saturation in these cases. On the other hand, as shown in
Figs. 6 and 7, when 8 (or k) is large and the symmetry
condition on ¢ is removed, the parallel acceleration non-
linearity does make a difference in the saturation. There is,
at present, no quantitatively correct theory for this case. In
this work, the new algorithms have been applied to simula-
tions which produce semi-coherent states. Their application
to more turbulent states in more complicated geometries
will be reported elsewhere.

For spatially (semi-)coherent states, the removal of the
nonlinear term in the so-called multipie-scale model [10]
used in the simulations of Lee er al. [ 5], Federici ez al. [6],
and Lee and Tang [18] was found to result in secular
growth of the waves after the linear growth has saturated.
This is because, unlike for codes which use the particle
conserving multiple-scale term, the dominant modes of the
density can grow without bound due to the coherent advec-
tion of E x B-trapped groups of particles. However, the
secular growth in the semi-coherent simulation can be
eliminated, if the symmetry condition for the potential is
imposed. Preliminary resuits of simulations which result in
turbulent states indicate that the nonlinear term in the
multiple-scale model has little effect on turbulent saturated
states.

As has been stressed by several authors of algorithms
such as our linearized-E,, & x scheme the noise involved in
describing the equilibrium in a standard particle simulation
can be eliminated. For simutations of small-amplitude
fluctuations, this can give a tremendous noise advantage
over standard particle codes. Situations in which this is the
case arise when the radial fluctuation scale length is much
shorter than the gradient scale lengths and when the physical
parameters are close to marginality for the instability that
drives the fluctuations.



PARTIALLY LINEARIZED ALGORITHMS

An interesting extension of weighted-particle schemes is
velocity-space splitting, in which different responses or
equations for the particle motion and the weights are used
in the different subregions of velocity space. By assuming
the weights of fast particles to be adiabatic, the high fre-
quency oscillations can be eliminated from the simulation
and, as we have demonstrated in this paper, even the restric-
tion on At imposed by the Courant condition can be
removed. For clectromagnetic simulation, this technique is
particularly useful for suppressing the numerical noise
arising from the free-streaming motion of the fast electrons
[26]. This technique is also expected to be particularly use-
ful for simulations near marginal stability since then linear
analytical responses may be adeguate for most of the
velocity space, so that the nonlinear (gyrokinetic or drift-
kinetic) dynamics may be needed only in a narrow
resonance region. This interesting possibility is presently
under investigation and will be reported elsewhere.

Another important application of the present algorithms
is the possibility of making meaningful comparisons {327 of
the results between the gyrokinetic particle code and fluid
codes which include finite-Larmor-radius effects [21]. To
account for the collisional dissipative effects in the particle
code, we can use the Lorentz model for the electron—ion
collisions [23,24] and the newly- developed gyrokinetic
model for the ion—ion coilisions [33].

As we have mentioned eartier, the noise reduction
methods using partially-linearized algorithms were
developed as a modification and extension of the weighted-
particle techniques originally used for fully linearized codes
[11]. Fully nonlinear generalizations that allow the intro-
duction of the parallel nonlinearity have been developed by
Kotschenreuther [13] and Parker and Lee [14]. These
novel approaches are worth pursuing. In the regime where
the fluctuation levels are small and the parallel nonlinearity
is negligible, these schemes have the same noise advantages
as our linearized-E|, & « scheme. If the fluctuations choose
to grow to large amplitude, the parallel nonlinear terms
kept by these schemes become important, although the
noise advantage over standard particle simulations is lost in
this regime.

ACKNOWLEDGMENTS
We thank the referees for their useful comments. This work was sup-
ported by U.S. DoE at Princeton Plasma Physics Laboratory through

Contract No. DE-AC02-76CHO-3073 and partly (for AM.D.) at the
University of Maryland through Contract No. DEFGO05-86ER53221.

REFERENCES
1. J. M. Dawson, Ret. Mod. Phys. 55, 403 (1583).

2. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer
Simulation (McGraw-Hill, New York, 1985).

38I107/2-9

323

3. R. W, Hockney and J. W. Eastwood, Computer Simulation Using
Particles (McGraw—Hill, New York, 1981).

4. T. P. Armstrong, R. C. Harding, C. Knorr, and D. Montgomery,
Methods of Computational Physics 9, 29 (1970).

5. W. W.Lee, J. A. Krommes, C. Oberman, and R. A. Smith, Phys. Fiuids
27, 2652 (1984).

6. J.F. Federici, W. W. Lee, and W. M. Tang, Phys. Fluids 30, 425 (1986).

7. A. M. Dimits and W. W. Lee, “Partially Linearized Gyrokinetic Par-
ticle Simulation of Drift Instabilities,” Proceedings, 12th Conference
on the Numerical Simulation of Plasmas, San Francisco, California,
1987, paper PW23,

8. A. M. Dimits, Ph.D. thesis, Princeton University, 1988.

9. A. M. Dimits and W. W. Lee, Phys. Fluids B3, 1558 (1991).

10. W. W. Lee, J. Comput. Phys. 72, 243 (1987).

11. J. A. Byers, “Noise Suppression Techniques in Macroparticle Models
of Collisionless Plasmas,” Proceedings, Fourth Conference on
Numerical Simulation of Plasmas, NRL, Washington, DC, 1970,
p. 496.

12. J. P. Freidberg, R. L. Morse, and C. W. Nielson, “Numerical Methods
for Studying Linear Stability of Highly Inhomogeneous Plasmas,”
Proceedings, Third Annual Numerical Plasma Simulation Conference,
Stanford University, CA, 1969.

13, M. Kotschenreuther, Bull. Am. Phys. Sec. 34, 2107 (1983);
Proceedings, 14th International Conference on the Numerical Simula-
tion of Plasmas, Annapolis, MD, 1991, paper PT20.

14. S. E. Parker and W. W. Lee, Phys, Fluids B 5, 77 (1993).

15. B.I. Cohen, 8. P. Auerbach, J. A. Byers, and H. Weitzner, Phys. Fluids
23, 2529 (1980).

16. W. W. Lee, Phys. Fhds 26, 556 {1983).

17. D. H. E. Dubin, J. A. Krommes, C. Oberman, and W. W. Lee, Phys.
Fluids 26, 3524 (1983).

18. W. W. Lee and W. M. Tang, Phys. Fluids 31, 612 (1988).

19. R. D, Sydora, T. 5. Hahm, W. W, Lee, and J. M. Dawson, Phys. Rev.
Lert. 64, 2015 (1990).

20. W. M. Tang, Nuclear Fusion 18, 1089 (1978).

21. W.Horton, R. D. Estes, and D. Biskamp, Plasma Phys. 22, 663 (1980);
W. Horton, Phys. Rep. 192 (1990).

22. E. A. Frieman and L. Chen, Phys. Fiuids 25, 502 (1982).

23. R. Shanny, J. M. Dawson, and J. M. Greene, Phys. Fluids 10, 1281
(1967).

24. A, Boozer and G. Kuo-Petravic, Phys. Fluids 24, 851 (1981).

25. N. A, Krall and A, W. Trivelpiece, Principles of Plasma Physics
{McGraw-Hill, New York, 1973), Section 9.15.

26, W. W, Lee, T. S. Hahm, and J. V. W. Reynders, “Considerations of
Electron Dynamics in a Gyrokinetic Plasma,” Sherwood Theory
Conference, paper 3D2, 1989,

27. 1. V. W. Reynders, Ph.D. thesis, Princeton University, 1992,

28. B. 1. Cohen, T. A. Brengle, D. B. Conley, and R. P. Freis, J. Compue,
Phys. 38, 45 (1980).

29. A. M. Dimits, Phys. Fluids B 2, 1768 (1990).

30. ). F. Drake, P. N. Guzdar, and A. B. Hassam, Phys. Rev. Leti. 61, 2205
{1988).

31. T. Tajima and F. W. Perkins, in Proceedings, Sherwood Fusion Theory
Conference, 1983, paper 2P9.

32, A. M. Dimits, J. F, Drake, and W, W. Lee, “Kinetic Effects on {on
Temperature Gradient Driven Turbulence,” Sherwood Theory
Conference, 1990, paper 3D27.

33. X. Q. Xu and M. N. Rosenbluth, Phys. Fluids B 3, 627 (1991).



